

Outline

- Introduction
- Reasoning with limited (imprecise) data
 - Underlying approach: T-FRI
- Extended approaches:
 - Adaptive T-FRI
 - Backward T-FRI
 - Higher-order T-FRI
 - Dynamic T-FRI
 - Weighted T-FRI
- Example applications:
 - Computer network security
 - Mammogram mass analysis
- Conclusion

T-FRI: Transformation-based fuzzy rule interpolation

Potential of Al

- Estimated \$15.7 trillion impact on global economy by 2030
- Performing tasks that once thought only humans could do
 - Simple forms: scheduling meetings, ordering meals, answering questions about the weather
 - Advanced forms: building self-driving cars, diagnosing medical conditions, bringing kids to schools
- Top trends for AI and AI-related development
 - Natural language communication between human and machines
 - Strengthening and disruption of cybersecurity
 - Integration of AI algorithms with quantum computation
 - o Governance on AI ethical principles and ethical data collection
 - Diversification of AI models to build culturally sensitive AI systems
 - Demystification of complex algorithms: Explainable Al

Where Powerful Al May Collapse

Al, especially deep learning is effective when working

- Deep learning becomes difficult when required to explain its outcomes
 - o For imprecisely described problems, in particular.
- Al stops working when facing novel problems with little training data
 - o For generative AI and big data driven techniques.

Fuzzy Inference Systems (Dense Rule Bases)

Fuzzy Rule Interpolation (Sparse Rule Bases)

- If a given observation does not (partially) match any rule, conventional fuzzy inference does not work
- Classical "tomato classification" problem:

Transformation-Based Fuzzy Rule Interpolation (T-FRI)

Construction of Intermediate Rule

Representative value: $Rep(A_{ij}) = Centre of gravity$

Relative placement factor:

$$\lambda_1 = \frac{d_1'}{d_1} = \frac{d_2'}{d_2}$$

Rule: If x_1 is A'_{12} , then x_2 is A'_{22}

O: x₁ is A₁₂ C: x₂ is A₂₂

Scale and Move Transformations

Adaptive T-FRI

- Problem: Inconsistent interpolated results due to rule sparseness and error propagation
- Solution: Rectification using symbolic AI: ATMS and GDE

ATMS: Assumption-based truth maintenance system

GDE: General diagnostic engine

Backward T-FRI

- Problem: Missing antecedent values in observations
- Solution: Reverse inference using known antecedent and consequent values

Forward-FRI

Backward-FRI

$$B_{l}^{*} = f_{T-FRI}((A_{1}^{*}, \dots, A_{l}^{*}, \dots, A_{M}^{*}), (R_{i}, \dots, R_{t}))$$

$$A_{l}^{*} = f_{B-FRI}((B^{*}, A_{1}^{*}, \dots, A_{l-1}^{*}, A_{l+1}^{*}, \dots, A_{M}^{*}), (R_{i}, \dots, R_{t}))$$

$$A_{l}^{*} = f_{B-FRI}((B^{*}, A_{1}^{*}, \dots, A_{l-1}^{*}, A_{l+1}^{*}, \dots, A_{M}^{*}), (R_{i}, \dots, R_{t}))$$

Higher-Order T-FRI

- Problem: Incapability of handling more than one form of uncertainty
- Solution: Harnessing additional uncertain information in rules/observations with rough-fuzzy sets

AIBD2023

Dynamic T-FRI (D-FRI)

- Problem: Ineffective and/or inefficient interpolated results due to use of static rule base
- Solution: Learning from interpolated results with clustering (e.g., via evolutionary computation)

Weighted T-FRI (W-T-FRI)

- Problem: Unrealistic/ counter-intuitive knowledge representation with all antecedents assumed of equal significance
- Solution: Learning attribute weights from given sparse rules only via reverse engineering

Reverse Engineering: Turing Rul

- Identifying all possible antecedent variables and their value domains
- Expanding any rule with missing variables into a rule set s.t. each missing variable in every expand rule takes one of its possible fuzzy values

Example sparse rule base:

- 1. If Temperature is Hot and Outlook is Sunny, then Swimming.
- 2. If Temperature is Hot and Outlook is Cloudy, then Swimming.
- 3. If Outlook is Rain, then Weight lifting.
- 4. If Temperature is Mild and Wind is Windy, then Weight lifting.
- 5. If Temperature is Mild and Wind is Not Windy, then Volleyball.

	Temperature	Outlook	Outlook Humidity Wind		Decision	
	Hot	Sunny	Humid	Windy	Swimming	
	Hot	Sunny	Humid	Not Windy	Swimming	
: Ru	Hot	Sunny	Normal	Windy	Swimming	
	Hot	Sunny	Normal	Not Windy	Swimming	
	Hot	Cloudy	Humid	Windy	Swimming	
les an	d _{Hot}	Cloudy	Humid	Not Windy	Swimming	
	Hot	Cloudy	Normal	Windy	Swimming	
• • • • •	Hot	Cloudy	Normal	Not Windy	Swimming	
into	a_{Hot}	Rain	Humid	Windy	Weight lifting	
, expa	ndedt	Rain	Humid	Not Windy	Weight lifting	
скра	Hot	Rain	Normal	Windy	Weight lifting	
	Hot	Rain	Normal	Not Windy	Weight lifting	
_	Mild	Rain	Humid	Windy	Weight lifting	
Ar	Mild	Rain	Humid	Not Windy	Weight lifting	
	Mild	Rain	Normal	Windy	Weight lifting	
Tempe	Mild	Rain	Normal	Not Windy	Weight lifting	
Tempe	Cool	Rain	Humid	Windy	Weight lifting	
Γ H ϵ	Cool	Rain	Humid	Not Windy	Weight lifting	
11	Cool	Rain	Normal	Windy	Weight lifting	
H	Cool	Rain	Normal	Not Windy	Weight lifting	
√ − ,,,	Mild	Sunny	Humid	Windy	Weight lifting	
$\mid H_0 \mid$	Mild	Sunny	Normal	Windy	Weight lifting	
11	Mild	Cloudy	Humid	Windy	Weight lifting	
\Box H	Mild	Cloudy	Normal	Windy	Weight lifting	
	Mild	Rain	Humid	Windy	Weight lifting	
	Mild	Rain	Normal	Windy	Weight lifting	
	Mild	Sunny	Humid	Not Windy	Volleyball	
	Mild	Sunny	Normal	Not Windy	Volleyball	
	Mild	Cloudy	Humid	Not Windy	Volleyball	
	Mild	Cloudy	Normal	Not Windy	Volleyball	
	Mild	Rain	Humid	Not Windy	Volleyball	
	Mild	Rain	Normal	Not Windy	Volleyball	

Weight Generation via Feature Ranking

- Ranking through variable evaluation
- Evaluation methods often embedded in feature selection
- Feature selection methods:
 - Information gain-based
 - Relief-F metric-based
 - Laplacian score-based
 - Rough set-based
 - Correlation-based
 - Consistency-based
 - ...

Implementation of W-T-FRI

-Weights

Weight-guided selection of closest rules

$$\tilde{d}(r^{p}, o^{*}) = \frac{1}{\sqrt{\sum_{t=1}^{m} \left(\frac{1-W_{t}}{m-1}\right)^{2}}} \sqrt{\sum_{j=1}^{m} \left(\left(\frac{1-W_{j}}{m-1}\right) d(A_{j}^{p}, A_{j}^{*})\right)^{2}}$$

$$= \frac{1}{\sqrt{\sum_{t=1}^{m} (1-W_{t})^{2}}} \sqrt{\sum_{j=1}^{m} \left((1-W_{j}) d(A_{j}^{p}, A_{j}^{*})\right)^{2}}$$

Weighted parameters for intermediate rule construction

$$\hat{w_z^i} = \sum_{j=1}^m W_j \hat{w_j^i}, \qquad \delta_z = \sum_{j=1}^m W_j \delta_{A_j}$$

Weighted transformation

$$\tilde{s}_z = \sum_{j=1}^m W_j s_{A_j}, \qquad \tilde{m}_z = \sum_{j=1}^m W_j m_{A_j}$$

Empirically, only two closest rules required in Weighted T-FRI

Selection of n Closest Rules

Construction of

Intermediate Rule

Scale and Move Transformation

Application: Computer Network Security

- Task: Protecting networked information system resources, by:
 - o Preserving authorised restrictions on access to, and disclosure of, information
 - o Guarding against unauthorised alternation to, or destruction of, information
 - Ensuring timely and reliable authorised access to, and use of, information
- Approach: Using intelligent systems to detect/prevent/recover from security attack (that compromises information security)
- Challenge: Knowledge being imprecise and sparse, and requirements changing over time

Network Intrusion Detection

- D-FRI-Snort: Enhances Snort with D-FRI
- Snort (open source IDS): collects and monitors network traffic data and generates attack alerts

AIBD2023

Performance of D-FRI-Snort

Snort vs D-FRI-Snort alert outputs

Obs.	Input			Output - Attack Alert		
No.	ATP	NPS	NPR	Snort PSA	D-FRI-Snort PSA	
1	17.78	283	1167	no alert	very low attack alert	
2	11.21	605	1764	no alert	low attack alert	
3	8.03	1105	2506	no alert	medium attack alert	
4	6.57	1317	3068	no alert	high attack alert	
5	5.28	1642	3657	no alert	very high attack alert	

ATP: Average time between received packets

NPS: Number of packets sent

NPR: Number of packets received

PSA: Port scan attack

Strengthening Results with Dynamic Learning

Accuracy with D-FRI-Snort dynamic rule promotion

 $\epsilon_{\%dvi}$ $\epsilon_{\%dvt}$ $\epsilon_{\%ivt}$

AVG 2.40 **1.31** 2.56

SD 2.72 **1.32** 2.68

D-FRI-Snort alert outputs after dynamic rule promotion

Obs.	Input			Attack Alert	
No.	ATP	NPS	NPR	D-FRI-Snort PSA	
1	6.95	1267	2385	high attack alert	
2	5.23	643	1875	low attack alert	
3	4.61	996	3010	high attack alert	
4	7.91	1005	2805	medium attack alert	
5	15.64	310	2266	low attack alert	

Application: Mammogram Mass Analysis

- ➤ Mammogram: Image obtained by mammography
- ➤ Mass: Group of cells clustered together more densely compared to surrounding tissues
- Benign/Malignant mass
 - Combination of Shape, Margins and Density
 --> Benign/Malignant
- Challenge: Insufficient coverage of problem space

Keyriläinen, Jani, et al. "Phase-contrast X-ray imaging of breast." Acta radiologica 51.8 (2010): 866-884.

Mammogram Mass Classification

AIBD2023

Classification Performance

➤ Use of entire rule set learned from BCDR-D01/BCDR-F01 (10x10 CV)

BCDR-D01								
Schemes	Accuracy (%)	Sensitivity (%)	Specificity (%)	AUC				
CRI	83.44	78.57	86.59	-				
T-FRI	91.22	87.85	93.41	0.9607				
W- T - FRI	91.65	88.93	93.41	0.9614				
BCDR-F01								
Schemes	Accuracy (%)	Sensitivity (%)	Specificity (%)	AUC				
CRI	83.73	81.30	86.27	-				
T-FRI	84.28	82.14	86.49	0.9019				
W- T - FRI	84.28	82.14	86.49	0.9023				

> State-of-the-art (explainable): AUC = 0.9650 / 0.8940 for BCDR-D01 / BCDR-F01 *

^{*} D.C. Moura et.al "An evaluation of image descriptors combined with clinical data for breast cancer diagnosis." International journal of computer assisted radiology and surgery 8.4 (2013): 561-574.

[•] AIBD2023

Classification Performance (Cont'd)

➤ Use of sparser rule bases (10x10 CV)

	Sparser Rule Base 1 (30% removed)							
	Schemes	Accuracy (%)	Sensitivity (%)	Specificity (%)	AUC			
	CRI	53.43	44.04	59.60	-			
)01	T- FRI	83.71	78.57	87.06	0.8918			
	W- T - FRI	86.07	81.55	89.02	0.9010			
BCDR-D03	Sparser Rule Base 2 (70% removed)							
BC	Schemes	Accuracy (%)	Sensitivity (%)	Specificity (%)	AUC			
	CRI	23.44	12.95	30.29	-			
	T- FRI	77.67	74.55	79.70	0.8589			
	W- T - FRI	81.75	79.02	83.53	0.8784			
	Sparser Rule Base 1 (30% removed)							
	Schemes	Accuracy (%)	Sensitivity (%)	Specificity (%)	AUC			
	CRI	38.42	29.41	47.99	-			
<u> </u>	$\operatorname{T-FRI}$	73.47	71.22	75.89	0.7948			
BCDR-F0	W- T - FRI	75.09	73.95	76.34	0.8238			
Ω	Sparser Rule Base 2 (70% removed)							
B(Schemes	Accuracy $(\%)$	Sensitivity $(\%)$	Specificity $(\%)$	AUC			
	CRI	16.33	12.60	20.24	-			
	$\operatorname{T-FRI}$	62.60	63.30	61.91	0.6833			
	W- T - FRI	66.33	68.06	64.58	0.7040			

Classification Performance (Cont'd)

Conclusion

- Al can still work with limited (and imprecise) data
 - o AI = \= Deep learning
 - o T-FRI offers a potentially powerful approach for explainable AI
- Further extensions/improvements/alternatives
 - Closed form T-FRI of mathematical rigour
 - T-FRI with different distance functions
 - Weighted FRI for non transformation-based approaches
 - TSK/ANFIS model-based FRI
 - Integration of FRI and compositional rule of inference
 - o Applications: counter-terrorism, image super-resolution

On-going and future work

- Vector form T-FRI of mathematical rigour
- D-FRI with dynamic rule-pruning using FRI
- T-FRI with different aggregation functions
- FRI over a group of observations
- Theoretical analysis of empirically revealed FRI properties
- More real-world applications

AIBD2023

Acknowledgement and References

- Thanks to former students who did the real work reported here:
 - Dr T. Chen, Prof C. Cheng, Dr R. Diao, Dr Z. Huang, Prof S. Jin, Dr F. Li, Dr N. Naik, Dr J. Yang, Prof L. Yang, Dr P. Zhang, Dr M. Zhou
- Selected references:
 - Transformation-based fuzzy rule interpolation with Mahalanobis distance measures supported by Choquet integral. *IEEE Transactions on Fuzzy Systems*, 31(4):1083-1097, 2023.
 - W-Infer-polation: Approximate reasoning via integrating weighted fuzzy rule inference and interpolation. Knowledge-Based Systems, 258:109995, 2022.
 - Fuzzy rule interpolation with k-neighbours for TSK models. *IEEE Transactions on Fuzzy Systems*, 40(10):4031-4043, 2022.
 - Constructing ANFIS with sparse data through groupbased rule interpolation: an evolutionary approach. IEEE Transactions on Fuzzy Systems, 30(4):893-907, 2022.
 - Approximate reasoning with fuzzy rule interpolation: Background and recent advances. Artificial Intelligence Review, 54:4543-4590, 2021.
 - ANFIS construction with sparse data via group rule interpolation. *IEEE Transactions on Cybernetics*, 51(5):2773-2786, 2021.
 - D-FRI-Honeypot: a secure sting operation for hacking the hackers using dynamic fuzzy rule interpolation. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 5(6): 893-907, 2021.
 - o Bidirectional approximate reasoning-based approach for decision support. *Information Sciences*, 506:99-112, 2020.
 - o Interpretable mammographic mass classification with fuzzy interpolative reasoning. *Knowledge-Based Systems*, 191:105279, 2020.

- o Interpolation with just two nearest neighbouring weighted fuzzy rules. *IEEE Transactions on Fuzzy Systems*, 28(9):2255-2262, 2020.
- A new approach for transformation-based fuzzy rule interpolation. *IEEE Transactions on Fuzzy Systems*, 28(12):3330-3344, 2020.
- Fuzzy knowledge-based prediction through weighted rule interpolation. *IEEE Transactions on Cybernetics*, 50(10):4508-4517, 2020.
- o Interpretable mammographic mass classification with fuzzy interpolative reasoning. *Knowledge-Based Systems*, 191:105279, 2020.
- Bidirectional approximate reasoning-based approach for decision support. *Information Sciences*, 506:99-112, 2020.
- Fuzzy rule-based interpolative reasoning supported by attribute ranking. *IEEE Transactions on Fuzzy Systems*, 26(5): 2758-2773, 2018.
- Dynamic fuzzy rule interpolation and its application to intrusion detection. *IEEE Transactions on Fuzzy Systems*, 26(4):1878-1892, 2018.
- Generalised adaptive fuzzy rule interpolation. IEEE Transactions on Fuzzy Systems, 2016.
- Rough-fuzzy rule interpolation. *Information Sciences*, 351:1-17, 2016.
- Backward fuzzy rule interpolation. IEEE Transactions on Fuzzy Systems, 22(6): 1682-1698, 2014.
- Closed form fuzzy interpolation. Fuzzy Sets and Systems, 225:1-22, 2013.
- Adaptive fuzzy interpolation. *IEEE Transactions on Fuzzy Systems*, 19(6):1107-1126, 2011.
- Fuzzy interpolative and extrapolative reasoning: a practical approach. *IEEE Transactions on Fuzzy Systems*, 16(1):13-28, 2008.
- Fuzzy interpolative reasoning via scale and move transformation. *IEEE Transactions on Fuzzy Systems*, 14(2):340-359, 2006.

Thank you!

Questions?